Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: covidwho-2066141

ABSTRACT

The aim of the study was to evaluate the dynamic changes of the total Natural Killer (NK) cells and different NK subpopulations according to their differentiated expression of CD16/CD56 in COVID-19 patients. Blood samples with EDTA were analyzed on day 1 (admission moment), day 5, and day 10 for the NK subtypes. At least 30,000 singlets were collected for each sample and white blood cells were gated in CD45/SSC and CD16/CD56 dot plots of fresh human blood. From the lymphocyte singlets, the NK cells subpopulations were analyzed based on the differentiated expression of surface markers and classified as follows: CD16-CD56+/++/CD16+CD56++/CD16+CD56+/CD16++CD56-. By examining the CD56 versus CD16 flow cytometry dot plots, we found four distinct NK sub-populations. These NK subtypes correspond to different NK phenotypes from secretory to cytolytic ones. There was no difference between total NK percentage of different disease forms. However, the total numbers decreased significantly both in survivors and non-survivors. Additionally, for the CD16-CD56+/++ phenotype, we observed different patterns, gradually decreasing in survivors and gradually increasing in those with fatal outcomes. Despite no difference in the proportion of the CD16-CD56++ NK cells in survivors vs. non-survivors, the main cytokine producers gradually decline during the study period in the survival group, underling the importance of adequate IFN production during the early stage of SARS-CoV-2 infection. Persistency in the circulation of CD56++ NK cells may have prognostic value in patients, with a fatal outcome. Total NK cells and the CD16+CD56+ NK subtypes exhibit significant decreasing trends across the moments for both survivors and non-survivors.


Subject(s)
COVID-19 , Killer Cells, Natural , CD56 Antigen/metabolism , COVID-19/immunology , Cytokines/metabolism , Humans , Killer Cells, Natural/classification , Receptors, IgG/metabolism , SARS-CoV-2
2.
Children (Basel) ; 9(9)2022 Sep 04.
Article in English | MEDLINE | ID: covidwho-2009963

ABSTRACT

COVID-19 and PIMS represent two novel pathologies that have challenged the medical world during the last two years on account of their being very similar, but yet very different. Our aim was to comparatively assess children with SARS-CoV-2 infection and PIMS in terms of symptoms, clinical findings, laboratory parameters, echocardiography, and evolution. Our retrospective study included 46 children with COVID-19 (group 1), and 20 children with confirmed PIMS (group 2). We found no significant differences in terms of age, gender, and originating area between the two groups. We noticed that fever was significantly more common in the PIMS group as compared to COVID-19 group (p = 0.0217). In terms of laboratory parameters, increased bilirubin and creatinine were significantly more frequent in children with COVID-19 (p = 0.0064/p = 0.0064), while hypoalbuminemia and elevated ESR were significantly more common in those with PIMS (p < 0.0001/p = 0.0127). Moreover, prognosis parameters such as D-dimers, NT-proBNP, and CK-MB were also found to be significantly higher in the PIMS group as compared to COVID-19 group (p = 0.0003/p = 0.0182/p = 0.0007). In terms of complications, most were identified in PIMS group, among which cardiac and liver impairment along with dehydration were significantly more common in children diagnosed with PIMS as compared to those detected with COVID-19. Similarly, children with PIMS had a significantly higher chance to have pathological echocardiography changes. Although difficult, the distinction between COVID-19 and PIMS is crucial for the patient's long-term outcome.

SELECTION OF CITATIONS
SEARCH DETAIL